

Nested Class in Java

In Java, inner class refers to the class that is declared inside class or interface In

Java, just like methods, variables of a class too can have another class as its

member. Writing a class within another is allowed in Java. The class written within

is called the nested class, and the class that holds the inner class is called

the outer class.

There are certain advantages associated with inner classes are as

follows:

- Making code clean and readable and adding more secure for data.

- Private methods of the outer class can be accessed, so bringing a new

dimension and making it closer to the real world.

There are basically four types of inner classes in java.

- Nested Inner Class

- Method Local Inner Classes

- Static Nested Classes

- Anonymous Inner Classes

Let us discuss each of the above following types sequentially in-depth alongside a

clean java program.

Inner Classes (Non-static Nested Classes)

 Inner classes are a security mechanism in Java. We know a class cannot be

associated with the access modifier private, but if we have the class as a member

of other class, then the inner class can be made private. And this is also used to

access the private members of a class.

Inner classes are of three types depending on how and where you define

them. They are: –

- Inner Class

- Method-local Inner Class

- Anonymous Inner Class

Inner Class

Creating an inner class is quite simple. You just need to write a class within a

class. Unlike a class, an inner class can be private and once you declare an inner

class private, it cannot be accessed from an object outside the class.

Following is the program to create an inner class and access it. In the given

example, we make the inner class private and access the class through a method.

Example1: for nested inner class

Java Program to Demonstrate Nested class

class Outer {

 // Class 2

 // Simple nested inner class

 class Inner {

 // show() method of inner class

 public void show()

 { // Print statement

 System.out.println("In a nested class method");

 }

 }

}

// Class 3 Main class

class Main {

 public static void main(String[] args)

 {

 // Note how inner class object is created inside main()

 Outer.Inner in = new Outer().new Inner();

 in.show(); // Calling show() method over above object created

 }

}

Example 2:

class Outer_Demo {

 int num;

 private class Inner_Demo { // inner class

 public void print() {

 System.out.println("This is an inner class");

 }

 }

 void display_Inner() {

 Inner_Demo inner = new Inner_Demo();

 inner.print();

 }

}

public class My_class {

 public static void main(String args[]) {

 Outer_Demo outer = new Outer_Demo(); // Instantiating the outer class

 outer.display_Inner();// Accessing the display_Inner() method.

 }

}

Example 3:

class Outer_Demo {

 // private variable of the outer class

 private int num = 175;

 // inner class

 public class Inner_Demo {

Output

This is an inner class.

Output

In a nested class method

 public int getNum() {

 System.out.println("This is the getnum method of the inner class");

 return num;

 }

 }

}

public class My_class2 {

 public static void main(String args[]) {

 // Instantiating the outer class

 Outer_Demo outer = new Outer_Demo();

 // Instantiating the inner class

 Outer_Demo.Inner_Demo inner = outer.new Inner_Demo();

 System.out.println(inner.getNum());

 }

}

Note: We cannot have a static method in a nested inner class because an inner

class is implicitly associated with an object of its outer class so it cannot define

any static method for itself. For example, the following program doesn’t compile.

Example2: for nested inner class

// Class 1: Outer class

class Outer { // Method defined inside outer class

 void outerMethod()

 { // Print statement

 System.out.println("inside outerMethod");

 }

 // Class 2: Inner class

 class Inner { // Main driver method

 public static void main(String[] args)

 {

 System.out.println("inside inner class Method");

 }

 }

Output

This is the getnum method of the inner class: 175

}

Output: Error

Method Local Inner Classes

Inner class can be declared within a method of an outer class which we will be

illustrating in the below example where Inner is an inner class in outerMethod().

Example 1: Java Program to Illustrate Inner class can be declared within a method

of outer class

 // Class 1 Outer class

class Outer {

 void outerMethod() // Method inside outer class

 {

 System.out.println("inside outerMethod"); // Print statement

 // Class 2 Inner class It is local to outerMethod()

 class Inner {

 void innerMethod() // Method defined inside inner class

 {

 // Print statement whenever inner class is called

 System.out.println("inside innerMethod");

 }

 }

 Inner y = new Inner(); // Creating object of inner class

 y.innerMethod(); // Calling over method defined inside it

 }

}

// Class 3 Main class

class Test {

 // Main driver method

 public static void main(String[] args)

 {

 // Creating object of outer class inside main() method

 Outer x = new Outer();

 // Calling over the same method as we did for inner class above

 x.outerMethod();

 }

}

Output

inside outerMethod

inside innerMethod

Method Local inner classes can’t use a local variable of the outer method until that

local variable is not declared as final. For example, the following code generates a

compiler error.

Note: “x” is not final in outerMethod() and innerMethod() tries to access it.

Example 2:

class Outer {

 void outerMethod() {

 int x = 98;

 System.out.println("inside outerMethod");

 class Inner {

 void innerMethod() {

 System.out.println("x= "+x);

 }

 }

 Inner y = new Inner();

 y.innerMethod();

 }

}

class test {

 public static void main(String[] args) {

 Outer x=new Outer();

 x.outerMethod();

 }

}

Output

inside outerMethod

x= 98

Note: Local inner class cannot access non-final local variable till JDK 1.7. Since

JDK 1.8, it is possible to access the non-final local variable in method local inner

class.

But the following code compiles and runs fine (Note that x is final this time)

Example 3

class Outer {

 void outerMethod() {

 final int x=98;

 System.out.println("inside outerMethod");

 class Inner {

 void innerMethod() {

 System.out.println("x = "+x);

 }

 }

 Inner y = new Inner();

 y.innerMethod();

 }

}

class test {

 public static void main(String[] args){

 Outer x = new Outer();

 x.outerMethod();

 }

}

Output

inside outerMethod

x = 98

Note:

The main reason we need to declare a local variable as a final is that the local

variable lives on the stack till the method is on the stack but there might be a case

the object of the inner class still lives on the heap.

Method local inner class can’t be marked as private, protected, static, and transient

but can be marked as abstract and final, but not both at the same time.

Static Nested Classes

A static inner class is a nested class which is a static member of the outer class. It

can be accessed without instantiating the outer class, using other static members.

Just like static members, a static nested class does not have access to the

instance variables and methods of the outer class. The syntax of static nested

class is as follows: −

Syntax

class MyOuter {

 static class Nested_Demo {

 }

}

Example

// Java Program to Illustrate Static Nested Classes Importing required classes

import java.util.*;

// Class 1 Outer class

class Outer {

 // Method

 private static void outerMethod()

 {

 // Print statement

 System.out.println("inside outerMethod");

 }

 // Class 2 Static inner class

 static class Inner {

 public static void display()

 {

 // Print statement

 System.out.println("inside inner class Method");

 // Calling method insid main() method

 outerMethod();

 }

 }

}

 // Class 3 Main class

class main {

 // Main driver method

 public static void main(String args[])

 {

 Outer.Inner obj = new Outer.Inner();

 // Calling method via above instance created

 obj.display();

 }

}

Outpinside inner class Method

inside outerMethod

Anonymous Inner Classes

An inner class declared without a class name is known as an anonymous inner

class. In case of anonymous inner classes, we declare and instantiate them at

the same time. Generally, they are used whenever you need to override the

method of a class or an interface. The syntax of an anonymous inner class is as

follows –

Syntax

AnonymousInner an_inner = new AnonymousInner() {

 public void my_method() {

 }

};

They are created in two ways:-

As a subclass of the specified type

As an implementer of the specified interface

Way 1: As a subclass of the specified type

Example: Java Program to Illustrate Anonymous Inner classes Declaration

Without any Name

// Class 1 Helper class

class Demo {

 void show()

 {

 System.out.println("i am in show method of super class");

 }

}

 // Class 2 Main class

class Flavor1Demo {

 // An anonymous class with Demo as base class

 Static Demo d = new Demo() {

 // Method 1

 // show() method

 void show()

 {

 // Calling method show() via super keyword

 // which refers to parent class

 super.show();

 // Print statement

 System.out.println("i am in Flavor1Demo class");

 }

 };

 // Method 2 Main driver method

 public static void main(String[] args)

 {

 // Calling show() method inside main() method

 d.show();

 }

}

Output

i am in show method of super class

i am in Flavor1Demo class

In the above code, we have two classes Demo and Flavor1Demo. Here demo act as

a super-class and the anonymous class acts as a subclass, both classes have a

method show(). In anonymous class show() method is overridden.

Way 2: As an implementer of the specified interface

Example:

// As an implementer of Specified interface

 // Interface

interface Hello {

 // Method defined inside interface

 void show();

}

 // Main class

class GFG {

 // Class implementing interface

 static Hello h = new Hello() {

 public void show()

 {

 // Print statement

 System.out.println("i am in anonymous class");

 }

 };

 public static void main(String[] args)

 {

 h.show();

 }

}

Output

i am in anonymous class

Output explanation:

Note:

In the above code, we create an object of anonymous inner class but this

anonymous inner class is an implementer of the interface Hello. Any anonymous

inner class can implement only one interface at one time. It can either extend a

class or implement an interface at a time.

